Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Pharmaceutics ; 15(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896201

RESUMO

The blood-brain barrier (BBB) is a biological barrier that protects the central nervous system (CNS) by ensuring an appropriate microenvironment. Brain microvascular endothelial cells (ECs) control the passage of molecules from blood to brain tissue and regulate their concentration-versus-time profiles to guarantee proper neuronal activity, angiogenesis and neurogenesis, as well as to prevent the entry of immune cells into the brain. However, the BBB also restricts the penetration of drugs, thus presenting a challenge in the development of therapeutics for CNS diseases. On the other hand, adenosine, an endogenous purine-based nucleoside that is expressed in most body tissues, regulates different body functions by acting through its G-protein-coupled receptors (A1, A2A, A2B and A3). Adenosine receptors (ARs) are thus considered potential drug targets for treating different metabolic, inflammatory and neurological diseases. In the CNS, A1 and A2A are expressed by astrocytes, oligodendrocytes, neurons, immune cells and ECs. Moreover, adenosine, by acting locally through its receptors A1 and/or A2A, may modulate BBB permeability, and this effect is potentiated when both receptors are simultaneously activated. This review showcases in vivo and in vitro evidence supporting AR signaling as a candidate for modifying endothelial barrier permeability in the treatment of CNS disorders.

2.
Biomolecules ; 13(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37759787

RESUMO

Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs. Through preclinical and clinical research, it has become evident that the modulation of ARs holds promise for the treatment of numerous diseases, including central nervous system disorders, cardiovascular and metabolic conditions, inflammatory and autoimmune diseases, and cancer. The latest studies discussed herein shed light on novel mechanisms through which ARs exert control over pathophysiological states. They also introduce new ligands and innovative strategies for receptor activation, presenting compelling evidence of efficacy along with the implicated signaling pathways. Collectively, these emerging insights underscore a promising trajectory toward harnessing the therapeutic potential of these multifaceted targets.

3.
Biomolecules ; 13(6)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37371547

RESUMO

Alzheimer's disease (AD) is the most prevalent kind of dementia with roughly 135 million cases expected in the world by 2050. Unfortunately, current medications for the treatment of AD can only relieve symptoms but they do not act as disease-modifying agents that can stop the course of AD. Caffeine is one of the most widely used drugs in the world today, and a number of clinical studies suggest that drinking coffee may be good for health, especially in the fight against neurodegenerative conditions such as AD. Experimental works conducted "in vivo" and "in vitro" provide intriguing evidence that caffeine exerts its neuroprotective effects by antagonistically binding to A2A receptors (A2ARs), a subset of GPCRs that are triggered by the endogenous nucleoside adenosine. This review provides a summary of the scientific data supporting the critical role that A2ARs play in memory loss and cognitive decline, as well as the evidence supporting the protective benefits against neurodegeneration that may be attained by caffeine's antagonistic action on these receptors. They are a novel and fascinating target for regulating and enhancing synaptic activity, achieving symptomatic and potentially disease-modifying effects, and protecting against neurodegeneration.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Fármacos Neuroprotetores , Humanos , Cafeína/farmacologia , Cafeína/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Café/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Receptores Purinérgicos P1 , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
4.
Psychopharmacology (Berl) ; 240(7): 1435-1452, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37233813

RESUMO

RATIONALE: 1-[(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl) methanone (MAM-2201) is a potent synthetic cannabinoid receptor agonist illegally marketed in "spice" products and as "synthacaine" for its psychoactive effects. It is a naphthoyl-indole derivative which differs from its analogue 1-[(5-Fluoropentyl)-1H-indol-3-yl](1-naphthylenyl) methanone (AM-2201) by the presence of a methyl substituent on carbon 4 (C-4) of the naphthoyl moiety. Multiple cases of intoxication and impaired driving have been linked to AM-2201 and MAM-2201 consumption. OBJECTIVES: This study aims to investigate the in vitro (murine and human cannabinoid receptors) and in vivo (CD-1 male mice) pharmacodynamic activity of MAM-2201 and compare its effects with those induced by its desmethylated analogue, AM-2201. RESULTS: In vitro competition binding studies confirmed that MAM-2201 and AM-2201 possess nanomolar affinity for both CD-1 murine and human CB1 and CB2 receptors, with preference for the CB1 receptor. In agreement with the in vitro binding data, in vivo studies showed that MAM-2201 induces visual, acoustic, and tactile impairments that were fully prevented by pretreatment with CB1 receptor antagonist/partial agonist AM-251, indicating a CB1 receptor mediated mechanism of action. Administration of MAM-2201 also altered locomotor activity and PPI responses of mice, pointing out its detrimental effect on motor and sensory gating functions and confirming its potential use liability. MAM-2201 and AM-2201 also caused deficits in short- and long-term working memory. CONCLUSION: These findings point to the potential public health burden that these synthetic cannabinoids may pose, with particular emphasis on impaired driving and workplace performance.


Assuntos
Canabinoides , Inibição Pré-Pulso , Masculino , Camundongos , Humanos , Animais , Canabinoides/farmacologia , Indóis/farmacologia , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
5.
Front Pharmacol ; 13: 1030895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278183

RESUMO

Adenosine receptors (ARs) have been identified as promising therapeutic targets for countless pathological conditions, spanning from inflammatory diseases to central nervous system disorders, from cancer to metabolic diseases, from cardiovascular pathologies to respiratory diseases, and beyond. This extraordinary therapeutic potential is mainly due to the plurality of pathophysiological actions of adenosine and the ubiquitous expression of its receptors. This is, however, a double-edged sword that makes the clinical development of effective ligands with tolerable side effects difficult. Evidence of this is the low number of AR agonists or antagonists that have reached the market. An alternative approach is to target allosteric sites via allosteric modulators, compounds endowed with several advantages over orthosteric ligands. In addition to the typical advantages of allosteric modulators, those acting on ARs could benefit from the fact that adenosine levels are elevated in pathological tissues, thus potentially having negligible effects on normal tissues where adenosine levels are maintained low. Several A1 and various A3AR allosteric modulators have been identified so far, and some of them have been validated in different preclinical settings, achieving promising results. Less fruitful, instead, has been the discovery of A2A and A2BAR allosteric modulators, although the results obtained up to now are encouraging. Collectively, data in the literature suggests that allosteric modulators of ARs could represent valuable pharmacological tools, potentially able to overcome the limitations of orthosteric ligands.

6.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887377

RESUMO

3-(1-Naphthalenylmethyl)-1-pentyl-1H-indole (JWH-175) is a synthetic cannabinoid illegally marketed for its psychoactive cannabis-like effects. This study aimed to investigate and compare in vitro and in vivo pharmacodynamic activity of JWH-175 with that of 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018), as well as evaluate the in vitro (human liver microsomes) and in vivo (urine and plasma of CD-1 male mice) metabolic profile of JWH-175. In vitro binding studies showed that JWH-175 is a cannabinoid receptor agonist less potent than JWH-018 on mouse and human CB1 and CB2 receptors. In agreement with in vitro data, JWH-175 reduced the fESPS in brain hippocampal slices of mice less effectively than JWH-018. Similarly, in vivo behavioral studies showed that JWH-175 impaired sensorimotor responses, reduced breath rate and motor activity, and increased pain threshold to mechanical stimuli less potently than JWH-018. Metabolic studies demonstrated that JWH-175 is rapidly bioactivated to JWH-018 in mice blood, suggesting that in vivo effects of JWH-175 are also due to JWH-018 formation. The pharmaco-toxicological profile of JWH-175 was characterized for the first time, proving its in vivo bio-activation to the more potent agonist JWH-018. Thus, it highlighted the great importance of investigating the in vivo metabolism of synthetic cannabinoids for both clinical toxicology and forensic purposes.


Assuntos
Canabinoides , Naftalenos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/química , Canabinoides/farmacologia , Humanos , Indóis/química , Masculino , Camundongos , Naftalenos/química , Receptor CB1 de Canabinoide
7.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566035

RESUMO

The A2A adenosine receptor is a protein belonging to a family of four GPCR adenosine receptors. It is involved in the regulation of several pathophysiological conditions in both the central nervous system and periphery. In the brain, its localization at pre- and postsynaptic level in striatum, cortex, hippocampus and its effects on glutamate release, microglia and astrocyte activation account for a crucial role in neurodegenerative diseases, including Alzheimer's disease (AD). This ailment is considered the main form of dementia and is expected to exponentially increase in coming years. The pathological tracts of AD include amyloid peptide-ß extracellular accumulation and tau hyperphosphorylation, causing neuronal cell death, cognitive deficit, and memory loss. Interestingly, in vitro and in vivo studies have demonstrated that A2A adenosine receptor antagonists may counteract each of these clinical signs, representing an important new strategy to fight a disease for which unfortunately only symptomatic drugs are available. This review offers a brief overview of the biological effects mediated by A2A adenosine receptors in AD animal and human studies and reports the state of the art of A2A adenosine receptor antagonists currently in clinical trials. As an original approach, it focuses on the crucial role of pharmacokinetics and ability to pass the blood-brain barrier in the discovery of new agents for treating CNS disorders. Considering that A2A receptor antagonist istradefylline is already commercially available for Parkinson's disease treatment, if the proof of concept of these ligands in AD is confirmed and reinforced, it will be easier to offer a new hope for AD patients.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Química Farmacêutica , Hipocampo/metabolismo , Humanos , Antagonistas de Receptores Purinérgicos P1/metabolismo , Receptor A2A de Adenosina/metabolismo
8.
Int J Mol Sci ; 23(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563447

RESUMO

The A2A adenosine receptor, a member of the P1 purinergic receptor family, plays a crucial role in the pathophysiology of different neurodegenerative illnesses, including Alzheimer's disease (AD). It regulates both neurons and glial cells, thus modulating synaptic transmission and neuroinflammation. AD is a complex, progressive neurological condition that is the leading cause of dementia in the world's old population (>65 years of age). Amyloid peptide-ß extracellular accumulation and neurofibrillary tangles constitute the principal etiologic tracts, resulting in apoptosis, brain shrinkage, and neuroinflammation. Interestingly, a growing body of evidence suggests a role of NLRP3 inflammasome as a target to treat neurodegenerative diseases. It represents a tripartite multiprotein complex including NLRP3, ASC, and procaspase-1. Its activation requires two steps that lead with IL-1ß and IL-18 release through caspase-1 activation. NLRP3 inhibition provides neuroprotection, and in recent years adenosine, through the A2A receptor, has been reported to modulate NLRP3 functions to reduce organ damage. In this review, we describe the role of NLRP3 in AD pathogenesis, both alone and in connection to A2A receptor regulation, in order to highlight a novel approach to address treatment of AD.


Assuntos
Doença de Alzheimer , Inflamassomos , Receptores A2 de Adenosina , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores A2 de Adenosina/metabolismo , Receptores A2 de Adenosina/uso terapêutico
9.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163142

RESUMO

Adenosine exerts an important role in the modulation of central nervous system (CNS) activity. Through the interaction with four G-protein coupled receptor (GPCR) subtypes, adenosine subtly regulates neurotransmission, interfering with the dopaminergic, glutamatergic, noradrenergic, serotoninergic, and endocannabinoid systems. The inhibitory and facilitating actions of adenosine on neurotransmission are mainly mediated by A1 and A2A adenosine receptors (ARs), respectively. Given their role in the CNS, ARs are promising therapeutic targets for neuropsychiatric disorders where altered neurotransmission represents the most likely etiological hypothesis. Activating or blocking ARs with specific pharmacological agents could therefore restore the balance of altered neurotransmitter systems, providing the rationale for the potential treatment of these highly debilitating conditions. In this review, we summarize and discuss the most relevant studies concerning AR modulation in psychotic and mood disorders such as schizophrenia, bipolar disorders, depression, and anxiety, as well as neurodevelopment disorders such as autism spectrum disorder (ASD), fragile X syndrome (FXS), attention-deficit hyperactivity disorder (ADHD), and neuropsychiatric aspects of neurodegenerative disorders.


Assuntos
Adenosina/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Animais , Humanos , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia
10.
Cells ; 10(9)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34571993

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative pathologies. Its incidence is in dramatic growth in Western societies and there is a need of both biomarkers to support the clinical diagnosis and drugs for the treatment of AD. The diagnostic criteria of AD are based on clinical data. However, it is necessary to develop biomarkers considering the neuropathology of AD. The A2A receptor, a G-protein coupled member of the P1 family of adenosine receptors, has different functions crucial for neurodegeneration. Its activation in the hippocampal region regulates synaptic plasticity and in particular glutamate release, NMDA receptor activation and calcium influx. Additionally, it exerts effects in neuroinflammation, regulating the secretion of pro-inflammatory cytokines. In AD patients, its expression is increased in the hippocampus/entorhinal cortex more than in the frontal cortex, a phenomenon not observed in age-matched control brains, indicating an association with AD pathology. It is upregulated in peripheral blood cells of patients affected by AD, thus reflecting its increase at central neuronal level. This review offers an overview on the main AD biomarkers and the potential role of A2A adenosine receptor as a new marker and therapeutic target.


Assuntos
Doença de Alzheimer/genética , Receptor A2A de Adenosina/fisiologia , Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Córtex Entorrinal/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Humanos , Plasticidade Neuronal/fisiologia , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato
11.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299305

RESUMO

Adenosine is a ubiquitous endogenous modulator with the main function of maintaining cellular and tissue homeostasis in pathological and stress conditions. It exerts its effect through the interaction with four G protein-coupled receptor (GPCR) subtypes referred as A1, A2A, A2B, and A3 adenosine receptors (ARs), each of which has a unique pharmacological profile and tissue distribution. Adenosine is a potent modulator of inflammation, and for this reason the adenosinergic system represents an excellent pharmacological target for the myriad of diseases in which inflammation represents a cause, a pathogenetic mechanism, a consequence, a manifestation, or a protective factor. The omnipresence of ARs in every cell of the immune system as well as in almost all cells in the body represents both an opportunity and an obstacle to the clinical use of AR ligands. This review offers an overview of the cardinal role of adenosine in the modulation of inflammation, showing how the stimulation or blocking of its receptors or agents capable of regulating its extracellular concentration can represent promising therapeutic strategies for the treatment of chronic inflammatory pathologies, neurodegenerative diseases, and cancer.


Assuntos
Adenosina/imunologia , Inflamação/imunologia , Adenosina/metabolismo , Animais , Humanos , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Ligantes , Pneumopatias/imunologia , Pneumopatias/metabolismo , Modelos Biológicos , Modelos Imunológicos , Neoplasias/imunologia , Neoplasias/metabolismo , Neuroimunomodulação , Osteoartrite/imunologia , Osteoartrite/metabolismo , Receptores Purinérgicos P1/imunologia , Receptores Purinérgicos P1/metabolismo , Doenças Reumáticas/imunologia , Doenças Reumáticas/metabolismo
13.
J Alzheimers Dis ; 80(3): 1105-1117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33646165

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative pathology covering about 70%of all cases of dementia. Adenosine, a ubiquitous nucleoside, plays a key role in neurodegeneration, through interaction with four receptor subtypes. The A2A receptor is upregulated in peripheral blood cells of patients affected by Parkinson's and Huntington's diseases, reflecting the same alteration found in brain tissues. However, whether these changes are also present in AD pathology has not been determined. OBJECTIVE: In this study we verified any significant difference between AD cases and controls in both brain and platelets and we evaluated whether peripheral A2A receptors may reflect the status of neuronal A2A receptors. METHODS: We evaluated the expression of A2A receptors in frontal white matter, frontal gray matter, and hippocampus/entorhinal cortex, in postmortem AD patients and control subjects, through [3H]ZM 241385 binding experiments. The same analysis was performed in peripheral platelets from AD patients versus controls. RESULTS: The expression of A2A receptors in frontal white matter, frontal gray matter, and hippocampus/entorhinal cortex, revealed a density (Bmax) of 174±29, 219±33, and 358±84 fmol/mg of proteins, respectively, in postmortem AD patients in comparison to 104±16, 103±19, and 121±20 fmol/mg of proteins in controls (p < 0.01). The same trend was observed in peripheral platelets from AD patients versus controls (Bmax of 214±17 versus 95±4 fmol/mg of proteins, respectively, p < 0.01). CONCLUSION: AD subjects show significantly higher A2A receptor density than controls. Values on platelets seem to correlate with those in the brain supporting a role for A2A receptor as a possible marker of AD pathology and drug target for novel therapies able to modify the progression of dementia.


Assuntos
Doença de Alzheimer/sangue , Biomarcadores/sangue , Plaquetas/metabolismo , Córtex Cerebral/metabolismo , Receptor A2A de Adenosina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Regulação para Cima
15.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218074

RESUMO

Adenosine is a purine nucleoside, responsible for the regulation of multiple physiological and pathological cellular and tissue functions by activation of four G protein-coupled receptors (GPCR), namely A1, A2A, A2B, and A3 adenosine receptors (ARs). In recent years, extensive progress has been made to elucidate the role of adenosine in pain regulation. Most of the antinociceptive effects of adenosine are dependent upon A1AR activation located at peripheral, spinal, and supraspinal sites. The role of A2AAR and A2BAR is more controversial since their activation has both pro- and anti-nociceptive effects. A3AR agonists are emerging as promising candidates for neuropathic pain. Although their therapeutic potential has been demonstrated in diverse preclinical studies, no AR ligands have so far reached the market. To date, novel pharmacological approaches such as adenosine regulating agents and allosteric modulators have been proposed to improve efficacy and limit side effects enhancing the effect of endogenous adenosine. This review aims to provide an overview of the therapeutic potential of ligands interacting with ARs and the adenosinergic system for the treatment of acute and chronic pain.


Assuntos
Regulação Alostérica , Neuralgia/prevenção & controle , Agonistas do Receptor Purinérgico P1/farmacologia , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Doença Aguda , Animais , Dor Crônica/metabolismo , Dor Crônica/prevenção & controle , Humanos , Ligantes , Neuralgia/metabolismo
16.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126773

RESUMO

Pulsed electromagnetic fields (PEMFs) are emerging as an innovative, non-invasive therapeutic option in different pathological conditions of the central nervous system, including cerebral ischemia. This study aimed to investigate the mechanism of action of PEMFs in an in vitro model of human astrocytes, which play a key role in the events that occur following ischemia. 1321N1 cells were exposed to PEMFs or hypoxic conditions and the release of relevant neurotrophic and angiogenic factors, such as VEGF, EPO, and TGF-ß1, was evaluated by means of ELISA or AlphaLISA assays. The involvement of the transcription factor HIF-1α was studied by using the specific inhibitor chetomin and its expression was measured by flow cytometry. PEMF exposure induced a time-dependent, HIF-1α-independent release of VEGF from 1321N1 cells. Astrocyte conditioned medium derived from PEMF-exposed astrocytes significantly reduced the oxygen-glucose deprivation-induced cell proliferation and viability decrease in the neuron-like cells SH-SY5Y. These findings contribute to our understanding of PEMFs action in neuropathological conditions and further corroborate their therapeutic potential in cerebral ischemia.


Assuntos
Astrócitos/citologia , Campos Eletromagnéticos , Glucose/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neuroblastoma/prevenção & controle , Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos da radiação , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neuroblastoma/etiologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Substâncias Protetoras , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética
17.
Cells ; 9(5)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443448

RESUMO

Glutamate cytotoxicity is implicated in neuronal death in different neurological disorders including stroke, traumatic brain injury, and neurodegenerative diseases. Adenosine is a nucleoside that plays an important role in modulating neuronal activity and its receptors have been identified as promising therapeutic targets for glutamate cytotoxicity. The purpose of this study is to elucidate the role of adenosine and its receptors on glutamate-induced injury in PC12 cells and to verify the protective effect of the novel A1 adenosine receptor positive allosteric modulator, TRR469. Flow cytometry experiments to detect apoptosis revealed that adenosine has a dual role in glutamate cytotoxicity, with A2A and A2B adenosine receptor (AR) activation exacerbating and A1 AR activation improving glutamate-induced cell injury. The overall effect of endogenous adenosine in PC12 cells resulted in a facilitating action on glutamate cytotoxicity, as demonstrated by the use of adenosine deaminase and selective antagonists. However, enhancing the action of endogenous adenosine on A1ARs by TRR469 completely abrogated glutamate-mediated cell death, caspase 3/7 activation, ROS production, and mitochondrial membrane potential loss. Our results indicate a novel potential therapeutic strategy against glutamate cytotoxicity based on the positive allosteric modulation of A1ARs.


Assuntos
Adenosina/farmacologia , Ácido Glutâmico/toxicidade , Neuroproteção/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Carbazóis/farmacologia , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Colforsina/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células PC12 , Piperazinas/farmacologia , Pirróis/farmacologia , Quinazolinas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores A2 de Adenosina/metabolismo , Tiofenos/farmacologia , Triazóis/farmacologia
18.
Pharmacol Res ; 159: 104940, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32470563

RESUMO

BACKGROUND: Recent approved medicines whose active principles are Δ9Tetrahidrocannabinol (Δ9-THC) and/or cannabidiol (CBD) open novel perspectives for other phytocannabinoids also present in Cannabis sativa L. varieties. Furthermore, solid data on the potential benefits of acidic and varinic phytocannabinoids in a variety of diseases are already available. Mode of action of cannabigerol (CBG), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabidivarin (CBDV) and cannabigerivarin (CBGV) is, to the very least, partial. HYPOTHESIS/PURPOSE: Cannabinoid CB1 or CB2 receptors, which belong to the G-protein-coupled receptor (GPCR) family, are important mediators of the action of those cannabinoids. Pure CBG, CBDA, CBGA, CBDV and CBGV from Cannabis sativa L. are differentially acting on CB1 or CB2 cannabinoid receptors. STUDY DESIGN: Determination of the affinity of phytocannabinoids for cannabinoid receptors and functional assessment of effects promoted by these compounds when interacting with cannabinoid receptors. METHODS: A heterologous system expressing the human versions of CB1 and/or CB2 receptors was used. Binding to membranes was measured using radioligands and binding to living cells using a homogenous time resolved fluorescence resonance energy transfer (HTRF) assay. Four different functional outputs were assayed: determination of cAMP levels and of extracellular-signal-related-kinase phosphorylation, label-free dynamic mass redistribution (DMR) and ß-arrestin recruitment. RESULTS: Affinity of cannabinoids depend on the ligand of reference and may be different in membranes and in living cells. All tested phytocannabinoids have agonist-like behavior but behaved as inverse-agonists in the presence of selective receptor agonists. CBGV displayed enhanced potency in many of the functional outputs. However, the most interesting result was a biased signaling that correlated with differential affinity, i.e. the overall results suggest that the binding mode of each ligand leads to specific receptor conformations underlying biased signaling outputs. CONCLUSION: Results here reported and the recent elucidation of the three-dimensional structure of CB1 and CB2 receptors help understanding the mechanism of action that might be protective and the molecular drug-receptor interactions underlying biased signaling.


Assuntos
Canabidiol/farmacologia , Canabinoides/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Animais , Sítios de Ligação , Ligação Competitiva , Técnicas Biossensoriais , Células CHO , Canabidiol/metabolismo , Canabinoides/metabolismo , Cricetulus , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Agonismo Inverso de Drogas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Ligantes , Fosforilação , Ligação Proteica , Ensaio Radioligante , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo
19.
Cells ; 9(5)2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344922

RESUMO

Adenosine modulates many physiological processes through the interaction with adenosine receptors (ARs) named as A1, A2A, A2B, and A3ARs. During ischemic stroke, adenosine mediates neuroprotective and anti-inflammatory effects through ARs activation. One of the dominant pathways generating extracellular adenosine involves the dephosphorylation of ATP by ecto-nucleotidases CD39 and CD73, which efficiently hydrolyze extracellular ATP to adenosine. The aim of the study is to assess the presence of ARs in lymphocytes from ischemic stroke patients compared to healthy subjects and to analyze changes in CD39 and CD73 expression in CD4+ and CD8+ lymphocytes. Saturation binding experiments revealed that A2AARs affinity and density were significantly increased in ischemic stroke patients whilst no differences were found in A1, A2B, and A3ARs. These results were also confirmed in reverse transcription (RT)-polymerase chain reaction (PCR) assays where A2AAR mRNA levels of ischemic stroke patients were higher than in control subjects. In flow cytometry experiments, the percentage of CD73+ cells was significantly decreased in lymphocytes and in T-lymphocyte subclasses CD4+ and CD8+ obtained from ischemic stroke patients in comparison with healthy individuals. These data corroborate the importance of the adenosinergic system in ischemic stroke and could open the way to more targeted therapeutic approaches and biomarker development for ischemic stroke.


Assuntos
Adenosina/metabolismo , AVC Isquêmico/metabolismo , Linfócitos/metabolismo , 5'-Nucleotidase/metabolismo , Adenosina/fisiologia , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Apirase/metabolismo , Isquemia Encefálica/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , AVC Isquêmico/imunologia , AVC Isquêmico/fisiopatologia , Masculino , Proteínas de Membrana , Fosfoproteínas , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P1/fisiologia , Acidente Vascular Cerebral/metabolismo
20.
Cytokine ; 125: 154777, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400640

RESUMO

Literature studies suggest important protective effects of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) on inflammatory pathways affecting joint and cerebral diseases. However, it is not clear on which bases they affect neuroprotection and the mechanism responsible is yet unknown. Therefore the aim of this study was to identify the molecular targets of PEMFs anti-neuroinflammatory action. The effects of PEMF exposure in cytokine production by lipopolysaccharide (LPS)-activated N9 microglial cells as well as the pathways involved, including adenylyl cyclase (AC), phospholipase C (PLC), protein kinase C epsilon (PKC-ε) and delta (PKC-δ), p38, ERK1/2, JNK1/2 mitogen activated protein kinases (MAPK), Akt and caspase 1, were investigated. In addition, the ability of PEMFs to modulate ROS generation, cell invasion and phagocytosis, was addressed. PEMFs reduced the LPS-increased production of TNF-α and IL-1ß in N9 cells, through a pathway involving JNK1/2. Furthermore, they decreased the LPS-induced release of IL-6, by a mechanism not dependent on AC, PLC, PKC-ε, PKC-δ, p38, ERK1/2, JNK1/2, Akt and caspase 1. Importantly, a significant effect of PEMFs in the reduction of crucial cell functions specific of microglia like ROS generation, cell invasion and phagocytosis was found. PEMFs inhibit neuroinflammation in N9 cells through a mechanism involving, at least in part, the activation of JNK MAPK signalling pathway and may be relevant to treat a variety of diseases characterized by neuroinflammation.


Assuntos
Inflamação/metabolismo , Interleucina-1beta/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Microglia/efeitos da radiação , Fator de Necrose Tumoral alfa/metabolismo , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/metabolismo , Animais , Caspase 1/metabolismo , Linhagem Celular , Citocinas/metabolismo , Campos Eletromagnéticos , Interleucina-6/metabolismo , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/enzimologia , Microglia/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/efeitos da radiação , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/antagonistas & inibidores , Proteína Quinase C-épsilon/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...